A Cubical Type Theory

Simon Huber
(j-w.w. Cyril Cohen, Thierry Coquand, Anders Mortberg)

University of Gothenburg

HoTT/UF 2015
Warsaw, June 29, 2015

Cubical Type Theory: Overview

» Type theory where we can directly argue about n-dimensional
cubes (points, lines, squares, cubes,).

» Based on a constructive model of type theory in cubical sets
with connections and diagonals.

» Id, I, ¥, data types, U
» The Univalence Axiom and function extensionality are
provable.

» But: usual definitional equality for J only propositional!
Problem in our previous approach recently pointed out by Dan
Licata.

» Not having definitional equalities for J does not seem to be a
problem (N.A. Danielsson)

» Other definitional equalities, e.g.,

ap: (f: A— B) = IdAab — IdB(f a)(f b)
ap f (refl Aa) = refl B(f a)
ap(gof)p=apg(apfp)

apidp=p

» Some higher inductive types with “good” definitional
equalities

Implementation: Cubicaltt

Prototype proof-assistant implemented in Haskell.

Based on: “A simple type-theoretic language: Mini-TT",
T. Coquand, Y. Kinoshita, B. Nordstrom, M. Takeya (2008).

Mini-TT is a variant of Martin-Lof type theory with data types.
Cubicaltt extends Mini-TT with:

>

>

>

>

>

name abstraction and application

identity types

composition

equivalences can be transformed into equalities (glueing)

some higher inductive types (experimental)

Try it: https://github.com/mortberg/cubicaltt

https://github.com/mortberg/cubicaltt

Basic Idea

Expressions may depend on names i,j, k,.... E.g.,
x: ALy B(i,x) Fu(x,i): C(x,i,y)
is a line connecting the two points

x:Ay:B(0,x)F u(x,0): C(x,0,y)
x: Ay :B(1,x)F u(x,1): C(x,1,y)

Each line i : I+ t(i) : A gives an equality

F (i) t(i) : 1d At(0) t(1)

The Interval T

v

Given by ¢, :=0|1|i|1—i|eA¢| @V (formulas)

> | ranges over names or symbols

v

Intuition: 7 an element of [0, 1], A is min, and V is max.

v

Equality is the equality in the free bounded distributive lattice
with generators i, 1 — /.

» De Morgan algebra via
1-0=1 1—(png)=(1-¢)V(1-v)
1-1=0 1-(pVY)=(1-p)r(1-7)
1-(1-i)=i

NB: iA(1—i)#0and iV (l—i)#1l

Overview of the Syntax (w/o Universe)

A B P, t,u,v:=x
|(x:A) = B|Xx:At|tu
| (x: A)x B|(t,u)|t1l]t2

[IDAB|IdPPab
(i)t

| te

| comp Pu

| glue A | (a,t) | unGlue A v

variables

IM-types

Y -types

identity types
name abstraction
formula application
composition
glueing

data types

Contexts and Substitutions

Contexts

M-A M
OF Mx:Ab ri:IF

Substitutions are as usual but we also allow to assign a formula to
a name:

o: A =T AFp:I
(o,i=p): A—T,i:1

Face Operations

Certain substitutions correspond to face operations. E.g.:
(x=x,i=0,y=y): (x:Ay:B(i=0)—=(x:Ai:Ly:B)

In general a face operation are a: N — [setting some names to
0 or 1 and otherwise the identity.

Faces are determined by all the assignments i = b, b € {0,1};
write

a = (iby). .. (inbn)

(Special case: o = id)

Basic Typing Rules

M . M oo
——— (x:AinT) _ (i7:TinT)
NEx:A M=i:I

Nx:AFB MNx:AFt:B
N-(x:A)—B NNEXAx:At:(x:A)— B

N-t:(x:A)— B NlFu:A
M-tu:B(x=u)

Also: Sigma types and data types ...

Equality between types

A =B Mi:TIFA
Fr'-IDAB = (i)A: 1D A(i0) A(i1)
'-P:IDAB M1 ((IA)p = A(ip)
M= Py (iy Pi =P
r'-P:IDAB r'-P:IDAB

r-Po=A r-pPlL=28

Heterogeneous ldentity Types

r'-P:IDAB —a: A N-b6:B
=1dPPab

Mi:I-t:A
IME ()t IdP((i)A) t(i0) t(i1)

[Fe:ldPPab Tkl (VD) = t(ie)
NEep: Py (iHei=ce
e:IldPPab e:IldPPab

N-e0=a: PO -el=b:P1

|dentity Types

We set
IdAab:=I1dP ((i)A)ab

This is enough to justify reflexivity, symmetry, function
extensionality, and that singletons are contractible!

In the implementation:
» universe U with U : U
» IDABisldUAB

Demo!

Kan Operations

Given /i : T+ A we want an equivalence between A(i0) and A(i1).
Require additional composition operations.

Refinement of Kan's extension condition (1955)

“Any open box can be filled”

Systems

A system
U= la— uy]

for '+ A is given by a family of compatible terms
Nl u, : A

(a ranging over a set of faces L, L downwards closed)

Systems

For a system &
Fak uy: A (a€ L)

and substitution o: A — [we get a system

AB - (do)sg: Ao (B € Lo)

Satisfying: (da)iq = ug for a € L

Composition

r'-P:IDAB N-a:A Fat py i ldP Pa ac uy (o € L)

+compPap:B

(comp P ap)o = comp Po ao po
compPap=pql ifide L
So: (compPap)a = p,l ifael

Kan Filling

r-P:IDAB N-a:A Fa b py i ldP Pa ac uy (o € L)
F=AfillPap:IdP Pa(comp P ap)

Can be reduced to composition using connections:
fillPap = (i) comp ((j) P(i Nj)) a [() pa(i AJ), (i0) — (j) a]

Special case: path lifting property (5 =[])

Demo!

Composition

comp ((i)A) ap is defined by induction on the type A:
» Case i :IFA=1dB bg b;.

comp ((1)A) 2 =
(i) comp ({1)B) (ai) [= pai, (i0) = by, (i1) = by]

» Case i:IFA=(x:B)— C. For by : B(il)
comp ({7)A) f & by = comp ({i) C(x = b)) (F bo) (& b)

with b = fill™ ((/)B) by [] and by = b0 : B(i0).

Glue

Given a system of equivalences on a type we introduce a new type:

r-A Fa b f, : Equiv T, Aa (a € L)
ﬂ—glueAF

la:A Tty : T, o fut, = aa : Ax
M+ (a,f):glueAf

(glue Af)o = glue Ao fo (a, t)o = (ao, to)
glue Af = Ty (a,)=1tq ifidel

Composition in a Universe

We also can define composition for glue Af.
If we have a universe U, we can reduce composition in U to glue.

Any path P : 1dU A B induces an equivalence P* : EquivA B
whose function part is given by:

a:AkcompPal]:B

Univalence Axiom

Using glue we can also prove the Univalence Axiom!

Demo!

Further Work

v

Formal correctness proof of model and implementation

v

Proof of canonicity for the type system

v

Definitional equality for J?

v

Related work: Brunerie/Licata, Polonsky, Altenkirch/Kaposi,
Bernardy/Coquand/Moulin

Thank you!

